Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Language
Document Type
Year range
1.
Image & Vision Computing ; 133:N.PAG-N.PAG, 2023.
Article in English | Academic Search Complete | ID: covidwho-2305041

ABSTRACT

• A customized image dataset is built for research on face mask detection. • The dataset is manually labeled to provide high annotation accuracy. • For Face mask detection customized CNN with multi-step image processing is used. • The performance of the proposed CNN is compared with YOLO v3 and Faster R-CNN. • Two publicly available datasets including MAFA and MOXA used for validation. Face mask detection has several applications including real-time surveillance, biometrics, etc. Face mask detection is also useful for surveillance of the public to ensure face mask wearing in public places. Ensuring that people are wearing a face mask is not possible with monitoring staff;instead, automatic systems are a much better choice for face mask detection and monitoring to help manage public behaviour and contribute to restricting the outbreak of COVID-19. Despite the availability of several such systems, the lack of a real image dataset is a big hurdle to validating state-of-the-art face mask detection systems. In addition, using the simulated datasets lack the analysis needed for real-world scenarios. This study builds a new dataset namely RILFD by taking real pictures using a camera and annotating them with two labels (with mask, without mask) which are publicly available for future research. In addition, this study investigates various machine learning models and off-the-shelf deep learning models YOLOv3 and Faster R-CNN for the detection of face masks. The customized CNN models in combination with the 4 steps of image processing are proposed for face mask detection. The proposed approach outperforms other models and proved its robustness with a 97.5% of accuracy score in face mask detection on the RILFD dataset and two publicly available datasets (MAFA and MOXA). [ FROM AUTHOR] Copyright of Image & Vision Computing is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

SELECTION OF CITATIONS
SEARCH DETAIL